Characterization of the anisotropic mechanical properties of excised human skin.
نویسندگان
چکیده
The mechanical properties of skin are important for a number of applications including surgery, dermatology, impact biomechanics and forensic science. In this study, we have investigated the influence of location and orientation on the deformation characteristics of 56 samples of excised human skin. Uniaxial tensile tests were carried out at a strain rate of 0.012 s(-1) on skin from the back. Digital Image Correlation was used for 2D strain measurement and a histological examination of the dermis was also performed. The mean ultimate tensile strength (UTS) was 21.6±8.4 MPa, the mean failure strain 54%±17%, the mean initial slope 1.18±0.88 MPa, the mean elastic modulus 83.3±34.9 MPa and the mean strain energy was 3.6±1.6 MJ/m(3). A multivariate analysis of variance has shown that these mechanical properties of skin are dependent upon the orientation of the Langer lines (P<0.0001-P=0.046). The location of specimens on the back was also found to have a significant effect on the UTS (P=0.0002), the elastic modulus (P=0.001) and the strain energy (P=0.0052). The histological investigation concluded that there is a definite correlation between the orientation of the Langer lines and the preferred orientation of collagen fibres in the dermis (P<0.001). The data obtained in this study will provide essential information for those wishing to model the skin using a structural constitutive model.
منابع مشابه
Strain rate effects on the failure characteristics of excised human skin
Introduction Skin is a complex, multi-layered material which exhibits non-linear, anisotropic and viscoelastic behaviour. Its structure is complex and can be broadly divided into three main layers: the epidermis, the dermis and hypodermis. The thickest of these layers, the dermis, consists of strong stiff collagen fibres which govern many of the mechanical properties of human skin [1]. The mech...
متن کاملInvestigation of Natural Convection in a Vertical Cavity Filled with a Anisotropic Porous Media
In present paper, a numerical analysis for a rectangular cavity filled with a anisotropic porous media has been studied. It is assumed that the horizontal walls are adiabatic and impermeable, while the side walls of the cavity are maintained at constant temperatures and concentrations. The buoyancy force that induced the fluid motion are assumed to be cooperative. In the two extreme cases o...
متن کاملTwo New Non-AFR Criteria for Depicting Strength Differential Effect (SDE) in Anisotropic Sheet Metals
The issue of pressure sensitivity of anisotropic sheet metals is investigated with introducing two new non-AFR criteria which are called here linear and non-Linear pressure sensitive criteria. The yield and plastic potential functions of these criteria are calibrated with directional tensile/compressive yield stresses and directional tensile Lankford coefficients, respectively. To determine unk...
متن کاملDynamic Behavior of Anisotropic Protein Microtubules Immersed in Cytosol Via Cooper–Naghdi Thick Shell Theory
In the present research, vibrational behavior of anisotropic protein microtubules (MTs) immersed in cytosol via Cooper–Naghdi shell model is investigated. MTs are hollow cylindrical structures in the eukaryotic cytoskeleton which surrounded by filament network. The temperature effect on vibration frequency is also taken into account by assuming temperature-dependent material properties for MTs....
متن کاملMechanical Properties of Excised Human Skin
In this study we have investigated in influence of location, gender and orientation on the deformation characteristics of 55 samples of human excised skin. Uniaxial tensile tests were carried out at a strain rate of 0.012s on excised human skin from the back. The deformation characteristics of skin (Ultimate Tensile Strength (P<0.0001), Failure Strain (P=0.0177), Young’s Modulus (P<0.0076), Ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2012